Activity of dietary fatty acids on FFA1 and FFA4 and characterisation of pinolenic acid as a dual FFA1/FFA4 agonist with potential effect against metabolic diseases.

نویسندگان

  • Elisabeth Christiansen
  • Kenneth R Watterson
  • Claire J Stocker
  • Elena Sokol
  • Laura Jenkins
  • Katharina Simon
  • Manuel Grundmann
  • Rasmus K Petersen
  • Edward T Wargent
  • Brian D Hudson
  • Evi Kostenis
  • Christer S Ejsing
  • Michael A Cawthorne
  • Graeme Milligan
  • Trond Ulven
چکیده

Various foods are associated with effects against metabolic diseases such as insulin resistance and type 2 diabetes; however, their mechanisms of action are mostly unclear. Fatty acids may contribute by acting as precursors of signalling molecules or by direct activity on receptors. The medium- and long-chain NEFA receptor FFA1 (free fatty acid receptor 1, previously known as GPR40) has been linked to enhancement of glucose-stimulated insulin secretion, whereas FFA4 (free fatty acid receptor 4, previously known as GPR120) has been associated with insulin-sensitising and anti-inflammatory effects, and both receptors are reported to protect pancreatic islets and promote secretion of appetite and glucose-regulating hormones. Hypothesising that FFA1 and FFA4 mediate therapeutic effects of dietary components, we screened a broad selection of NEFA on FFA1 and FFA4 and characterised active compounds in concentration-response curves. Of the screened compounds, pinolenic acid, a constituent of pine nut oil, was identified as a relatively potent and efficacious dual FFA1/FFA4 agonist, and its suitability for further studies was confirmed by additional in vitro characterisation. Pine nut oil and free and esterified pure pinolenic acid were tested in an acute glucose tolerance test in mice. Pine nut oil showed a moderately but significantly improved glucose tolerance compared with maize oil. Pure pinolenic acid or ethyl ester gave robust and highly significant improvements of glucose tolerance. In conclusion, the present results indicate that pinolenic acid is a comparatively potent and efficacious dual FFA1/FFA4 agonist that exerts antidiabetic effects in an acute mouse model. The compound thus deserves attention as a potential active dietary ingredient to prevent or counteract metabolic diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Acidic Free Fatty Acid Receptor 4 Agonists with Antidiabetic Activity.

The free fatty acid receptor 4 (FFA4 or GPR120) has appeared as an interesting potential target for the treatment of metabolic disorders. At present, most FFA4 ligands are carboxylic acids that are assumed to mimic the endogenous long-chain fatty acid agonists. Here, we report preliminary structure-activity relationship studies of a previously disclosed nonacidic sulfonamide FFA4 agonist. Mutag...

متن کامل

Therapeutic Role and Ligands of Medium- to Long-Chain Fatty Acid Receptors

Medium- and long-chain free fatty acids (FFAs) are energy source for whole body and biological metabolites and components. In these decades, some research groups have reported that the biological functions of medium- to long-chain FFAs are exerted through G-protein coupled receptor designated free fatty acid receptor (FFAR). As the medium- to long-chain FFAs-activated FFARs, FFA1 and FFA4 are r...

متن کامل

Omega-3 fatty acids and other FFA4 agonists inhibit growth factor signaling in human prostate cancer cells.

Omega-3 fatty acids (n-3 FAs) are proposed to have many beneficial effects on human health. However, the mechanisms underlying their potential cancer preventative effects are unclear. G protein-coupled receptors (GPCRs) of the free fatty acid receptor (FFAR) family, FFA1/GPR40 and FFA4/GPR120, specifically bind n-3 FAs as agonist ligands. In this study, we examined the effects of n-3 FAs in hum...

متن کامل

Treatment of Type 2 Diabetes by Free Fatty Acid Receptor Agonists

Dietary free fatty acids (FFAs), such as ω-3 fatty acids, regulate metabolic and anti-inflammatory processes, with many of these effects attributed to FFAs interacting with a family of G protein-coupled receptors. Selective synthetic ligands for free fatty acid receptors (FFA1-4) have consequently been developed as potential treatments for type 2 diabetes (T2D). In particular, clinical studies ...

متن کامل

The pharmacology of TUG-891, a potent and selective agonist of the free fatty acid receptor 4 (FFA4/GPR120), demonstrates both potential opportunity and possible challenges to therapeutic agonism.

TUG-891 [3-(4-((4-fluoro-4'-methyl-[1,1'-biphenyl]-2-yl)methoxy)phenyl)propanoic acid] was recently described as a potent and selective agonist for the long chain free fatty acid (LCFA) receptor 4 (FFA4; previously G protein-coupled receptor 120, or GPR120). Herein, we have used TUG-891 to further define the function of FFA4 and used this compound in proof of principle studies to indicate the t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The British journal of nutrition

دوره 113 11  شماره 

صفحات  -

تاریخ انتشار 2015